Measurable dynamics of maps on profinite groups
نویسندگان
چکیده
منابع مشابه
Profinite Groups
γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...
متن کاملDiscrete Conformai , Groups and Measurable Dynamics
Motivated by his study of 2nd order differential equations a(z)w" + b(z)W + c(z)w = 0 Poincaré (1882) unveiled the vast subject of discrete subgroups of conformai transformations, (z -»(az + b)/(cz + d)}9 their associated Riemann surfaces, and the intricacies of the limit set—Cantor sets, nowhere differentiable curves, etc. In this paper we discuss an interplay between discrete conformai groups...
متن کاملCohomology of Profinite Groups
A directed set I is a partially ordered set such that for all i, j ∈ I there exists a k ∈ I such that k ≥ i and k ≥ j. An inverse system of groups is a collection of groups {Gi} indexed by a directed set I together with group homomorphisms πij : Gi −→ Gj whenever i ≥ j such that πii = idGi and πjk ◦ πij = πik. Let H be a group. We call a family of homomorphisms {ψi : H −→ Gi : i ∈ I} compatible...
متن کاملCohomology of Profinite Groups
The aim of this thesis is to study profinite groups of type FPn. These are groups G which admit a projective resolution P of Ẑ as a ẐJGK-module such that P0, . . . , Pn are finitely generated, so this property can be studied using the tools of profinite group cohomology. In studying profinite groups it is often useful to consider their cohomology groups with profinite coefficients, but pre-exis...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2007
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(07)80063-2